题目
已知函数f(x)=Asin(wx+派/4)(其中x€R,A>0,w>0)的最大值为2、最小正周期为8.(1)求函数f(x)的解析式(2)若函数f(x)图象上的两点P,Q的横坐标依次为2、4、0为坐标原点、求cos角POQ的值.
提问时间:2020-12-02
答案
已知函数f(x)=Asin(ωx+π/4)(其中x∈R,A>0,ω>0)的最大值为2,最小周期为8
(1)求函数f(x)的解析式(2)若函数f(x)图像上的两点P,Q的横坐标依次为2,4,0为坐标原点,求cos∠P0Q的值
(1)解析:∵函数f(x)=Asin(ωx+π/4)(其中x∈R,A>0,ω>0)的最大值为2,最小周期为8
∴ω=2π/8=π/4
∴f(x)=2sin(π/4x+π/4)
(2)解析:f(2)=2sin(π/2+π/4)=√2==>P(2, √2)
f(4)=2sin(π+π/4)=-√2==>Q(4,-√2)
∴|OP|=√6,|OQ|=3√2,|PQ|=2√3
∴cos∠POQ=(OP^2+OQ^2-PQ^3)/(2OP*OQ)=(6+18-12)/(2*√6*3√2)=√3/3
(1)求函数f(x)的解析式(2)若函数f(x)图像上的两点P,Q的横坐标依次为2,4,0为坐标原点,求cos∠P0Q的值
(1)解析:∵函数f(x)=Asin(ωx+π/4)(其中x∈R,A>0,ω>0)的最大值为2,最小周期为8
∴ω=2π/8=π/4
∴f(x)=2sin(π/4x+π/4)
(2)解析:f(2)=2sin(π/2+π/4)=√2==>P(2, √2)
f(4)=2sin(π+π/4)=-√2==>Q(4,-√2)
∴|OP|=√6,|OQ|=3√2,|PQ|=2√3
∴cos∠POQ=(OP^2+OQ^2-PQ^3)/(2OP*OQ)=(6+18-12)/(2*√6*3√2)=√3/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1童年里的令我感动的一件事,作文400字左右,内容新颖!
- 21隔离变压器 是没有零线吗?为什么要用它啊?它有什么优点吗?
- 3请大家给我讲解一下both和all的用法
- 4一根铁丝,第一次用去2分之1多一米.第二次用去余下的3分之1少一米,还剩15米,铁丝原长几米?
- 5在你的卧室里的英文
- 6用简便方法计算:202²
- 7What do we sweep away?
- 8大海——我的故乡 诗歌
- 9一块平行四边形的钢板,面积是38.5平方米,高是12.5米,高比低长几米?
- 10某港口位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,“远航”号以16海里/小时的速度沿东北方向航行,“海天”号以12海里/小时的速度沿西北方向航行.离开港口
热门考点