题目
A为3阶矩阵,|A-E|=|A-2E|=|A-3E|=0,求|A*-E|
|E-A|=(-1)^3*|A-E|=0
同理|2E-A|=|3E-A|=|E-A|=0
|E-A|=(-1)^3*|A-E|=0
同理|2E-A|=|3E-A|=|E-A|=0
提问时间:2020-12-02
答案
因为|A-E|=0
所以|E-A|=(-1)^3*|A-E|=0
同理|2E-A|=|3E-A|=|E-A|=0
由此我们可以知道,矩阵A的三个特征值的为1,2,3(联系矩阵的特征值的求法)
所以矩阵A可逆,且|A|=1×2×3=6.
AA*=|A|E
所以A*=|A|A^(-1) [A^(-1)表示A的逆矩阵]
A的特征值为1,2,3
所以A^(-1)的特征值为1,1/2,1/3
所以A*的特征值为6,3,2 因为A*=|A|A^(-1)
所以我们知道,存在可逆矩阵P和它的逆矩阵Q【Q=P^(-1),】,使得PA*Q的结果为一对角阵D,即
PA*Q=D,且D的对角线元素为6,3,2
所以|A*-E|=|P| |A*-E| |Q|=|PA*Q-PEQ|=|D-E| 因为P、Q互为逆矩阵 |P|*|Q|=1,PEQ=E
D-E的结果是一对角阵,对角线元素为5,2,1
所以|A*-E|=|D-E| =5×2×1=10
对于矩阵E-A,相当于矩阵A-E的每行乘上-1
在计算行列式的时候,如果某一行(列)有公因子k,可以讲k提到行列式外面
所以计算|E-A|时,每行都提出公因子-1,就得到|A-E|,总共3行
所以|E-A|=(-1)^3*|A-E|=0
所以|E-A|=(-1)^3*|A-E|=0
同理|2E-A|=|3E-A|=|E-A|=0
由此我们可以知道,矩阵A的三个特征值的为1,2,3(联系矩阵的特征值的求法)
所以矩阵A可逆,且|A|=1×2×3=6.
AA*=|A|E
所以A*=|A|A^(-1) [A^(-1)表示A的逆矩阵]
A的特征值为1,2,3
所以A^(-1)的特征值为1,1/2,1/3
所以A*的特征值为6,3,2 因为A*=|A|A^(-1)
所以我们知道,存在可逆矩阵P和它的逆矩阵Q【Q=P^(-1),】,使得PA*Q的结果为一对角阵D,即
PA*Q=D,且D的对角线元素为6,3,2
所以|A*-E|=|P| |A*-E| |Q|=|PA*Q-PEQ|=|D-E| 因为P、Q互为逆矩阵 |P|*|Q|=1,PEQ=E
D-E的结果是一对角阵,对角线元素为5,2,1
所以|A*-E|=|D-E| =5×2×1=10
对于矩阵E-A,相当于矩阵A-E的每行乘上-1
在计算行列式的时候,如果某一行(列)有公因子k,可以讲k提到行列式外面
所以计算|E-A|时,每行都提出公因子-1,就得到|A-E|,总共3行
所以|E-A|=(-1)^3*|A-E|=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1判断1 the rainbow forms when the rain stops 2the rain comes from the wind
- 2一架飞机从北京的到上海,飞行速度和所用时间() A成正比例 B成反比例C不成比例
- 3设y=ln(1+x^2),则y(0)的五次导数等于多少?
- 4月相的方向是?急!
- 5The windows was broken after the rain beat heavily a_ it
- 6写完作业后,我又全神贯注、专心致志地检查了一遍.修改病句.
- 7黄赤交角变大则五带有什么变化 为什么
- 8关于高中化学NO2的问题
- 9下列各组原子序数所表示的两种元素,能形成AB2型离子化合物的是( ) A.6和8 B.11和13 C.11和16 D.12和17
- 10He is leaving the first week in June.