当前位置: > 设x y为正实数,且x+y=1,证明:(1+1/x)(1+z/y)>=9...
题目
设x y为正实数,且x+y=1,证明:(1+1/x)(1+z/y)>=9

提问时间:2020-12-02

答案
证明:(1+1/x)(1+1/y)>=9 吧
方法一:(分析法(找思路))(1+1/x)(1+1/y)>=9 等价于 (x+1)(y+1)>=9xy (通分,去分母) 等价于 xy<=1/4 (展开,移项并注意到x+y=1)
最后由平均值不等式知显然成立
方法二:(综合法)因为x+y=1,x>0,y>0,所以xy<=[(x+y)/2]^2=1/4
从而 8xy<=2
9xy<=2+xy=xy+(x+y)+1=(x+1)(y+1)
两边同时除以xy,整理得(1+1/x)(1+1/y)>=9
方法三:(1+1/x)(1+1/y)=1+1/x+1/y+1/(xy)=1+(x+y)/(xy)+1/(xy)=1+2/xy>=1+2/[(x+y)/2]^2=9
还有其它方法不再一一说明
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.