当前位置: > 如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB. (1)求证:PB是⊙O的切线; (2)已知PA=3,BC=1,求⊙O的半径....
题目
如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.

(1)求证:PB是⊙O的切线;
(2)已知PA=
3
,BC=1,求⊙O的半径.

提问时间:2020-12-02

答案
(1)证明:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵PA=PB,∴∠PAB=∠PBA,∴∠OAB+∠PAB=∠OBA+∠PBA,∴∠PAO=∠PBO.(2分)又∵PA是⊙O的切线,∴∠PAO=90°,∴∠PBO=90°,∴OB⊥PB.(4分)又∵OB是⊙O半径,∴P...
(1)要证PB是⊙O的切线,只要连接OB,求证∠OBP=90°即可;
(2)连接OP,交AB于点D,求半径时,可以证明△APO∽△DPA,还可证明△PAO∽△ABC,在Rt△OAP中利用勾股定理.

切线的判定.

本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质,及勾股定理的运用.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.