当前位置: > 设A使奇数阶正交矩阵,且det(A)=1,证明det(E-A)=0....
题目
设A使奇数阶正交矩阵,且det(A)=1,证明det(E-A)=0.

提问时间:2020-12-01

答案
证明:A是奇数阶正交矩阵则A*AT=E ,(AT为A的转置)而对于:det(E-A)则代入A*AT=Edet(E-A)=det(A*AT-A)=det(A)*det(AT-E)det(AT-E)=det(A-E)T=det(A-E)因为是奇数阶正交矩阵.设为n,所以det(A-E)=(-1)^n*det(E-A)=-det...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.