题目
在三角形ABC中,求证:tanA/2tanB/2+tanB/2tanC/2+tanA/2tanC/2=1
提问时间:2020-11-30
答案
tanB/2=tan(π-A-C)/2=tan[π/2-(A+C)/2]=cot(A+C)/2
=(1-tanA/2*tanC/2)/(tanA/2+tanC/2)
因此tanA/2tanB/2+tanB/2tanC/2+tanA/2tanC/2
=tanB/2(tanA/2+tanC/2)+tanA/2tanC/2
=[(1-tanA/2*tanC/2)/(tanA/2+tanC/2)]*(tanA/2+tanC/2)+tanA/2tanC/2
=1-tanA/2tanC/2+tanA/2tanC/2
=1
=(1-tanA/2*tanC/2)/(tanA/2+tanC/2)
因此tanA/2tanB/2+tanB/2tanC/2+tanA/2tanC/2
=tanB/2(tanA/2+tanC/2)+tanA/2tanC/2
=[(1-tanA/2*tanC/2)/(tanA/2+tanC/2)]*(tanA/2+tanC/2)+tanA/2tanC/2
=1-tanA/2tanC/2+tanA/2tanC/2
=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点