当前位置: > 给出正整数n能够被11整除的判别法,并证明...
题目
给出正整数n能够被11整除的判别法,并证明

提问时间:2020-11-30

答案
奇数位所有数字之和A-偶数位上所有数字之和B=C,如果C是11的倍数,则能被11整除.
证明:由科学计数法:n=a1*10^p1+a2*10^(p1-1)+a3*10^(p1-2)+...+a(p1-1)*10^1+a(p1)*10^0
其中,a(p1-1)中(p1-1)是a的脚码如a1a2a3a4..)
(1)p1为奇数时,n=【a1*10+a2】*10^p2+【a3*10+a4】*10^(p4)+...+a(p1-1)*10+a(p1)
=【a1*10+a2】*(10^p2-1+1)+【a3*10+a4】*(10^(p4)-1+1)+...+a(p1-1)*10+a(p1)
10^p2-1,10^(p4)-1.都是11的倍数
所以n=11*M+a1*10+a2+a3*10+a4+...+a(p1-1)*10+a(p1)
=11*M+10(a1+a3+a5+.+)a(p1-1)+(a2+a4+...+a(p1))
=11*M+11(a1+a3+a5+.+)a(p1-1)+(a2+a4+...+a(p1))-(a1+a3+a5+.+)a(p1-1)
(a2+a4+...+a(p1))表示奇数位所有数字之和A,a1+a3+a5+.+)a(p1-1)表示偶数位上所有数字之和B;如果A-B是11的倍数,不妨设为11N,
所以n=11M+11(a1+a3+a5+.+)a(p1-1)+11N,是11的倍数;
(2)p2为偶数时,类似(1)的证明方法,可以证明n是11的倍数.
证完.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.