题目
设椭圆
+y2=1的焦点为点F1,F2,点P为椭圆上的一动点,当∠F1PF2为钝角时,求点P的横坐标的取值范围.
x2 |
4 |
提问时间:2020-11-30
答案
设p(x,y),则 F1(-
),F2(
,0),
且∠F1PF2是钝角
⇔P
+P
<F1
⇔(x+
)2+y2+(x-
)2+y2<12
⇔x2+3+y2<6
⇔x2+(1-
)<3
⇔x2<
⇔-
<x<
.
故点P的横坐标的取值范围x∈(-
,
)
3,0 |
3 |
且∠F1PF2是钝角
⇔P
F | 2 1 |
F | 2 2 |
F | 2 2 |
3 |
3 |
⇔x2+3+y2<6
⇔x2+(1-
x2 |
4 |
⇔x2<
8 |
3 |
2
| ||
3 |
2
| ||
3 |
故点P的横坐标的取值范围x∈(-
2
| ||
3 |
2
| ||
3 |
设p(x,y),根据椭圆方程求得两焦点坐标,根据∠F1PF2是钝角推断出PF12+PF22<F1F22代入p坐标求得x和y的不等式关系,求得x的范围.
直线与圆锥曲线的综合问题.
本题主要考查了椭圆的简单性质和解不等式,∠F1PF2是钝角推断出PF21+PF22<F1F22,是解题关键.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1化学必修四,△H<0是放热反应,放热反应定义是反应前总能量大于反应后总能量,那么反应物能量=生成物能量+△H,当这个公式里的△H<0时反应物能量就<生成物能量了啊,为什么还叫放热反应?
- 2{X-(X*15%+Y*30%)}/X-100%=45% 求X=?Y=?
- 3care of the soul is a gradual process _______ eve
- 4老人口中的孩子 用英语怎么说
- 5转移的电子数目计算
- 63.45*0.6*0.5简算
- 7l watch tv ou saturdays?的中文
- 8古人不耻下问的事例,简洁一点的
- 9Journal of Physics B是什么
- 10《铁杵成针》这个故事出自《三字经》哪句?
热门考点