当前位置: > 证明:对大于2的一切正整数n,下列不等式都成立....
题目
证明:对大于2的一切正整数n,下列不等式都成立.
(1+2+3+...+n)(1+1/2+1/3+...+1/n)≥n^2+n+1
ps:请用数学归纳法证明
请说明 怎样一步得出 我没学过课改后的课本 所以 不等式

提问时间:2020-11-29

答案
n=3,左边等于=右边=11;假设n成立,n+1时,左边=(1+2+...+n)(1+1/2+...+1/n)+(n+1)(1+1/2+...+1/(n+1))+(1+2+...+n)(1/(n+1)),比较归纳还相差2n+2,而最后一项为n/2,所以你只需证明(n+1)(1+1/2+...+1/(n+1))>3n...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.