当前位置: > 证明:曲面F(2x-z,x+y)=0(其中F为可微函数)上任一点的切平面平行于定直线....
题目
证明:曲面F(2x-z,x+y)=0(其中F为可微函数)上任一点的切平面平行于定直线.

提问时间:2020-11-29

答案
设曲面上任意一点(x1,y1,z1),
易得到此处切平面方程:
(2F1+F2)(x-x1)+F2(y-y1)-F1(z-z1)=0
显然法向量为(2F1+F2,F2,-F1)
假设该定直线一个方向向量为(1,m,n)
(2F1+F2,F2,-F1)*(1,m,n)=0
m=-1,n=2
所以该直线一个方向向量为(1,-1,2)
不妨设其过点(0,0,0)
得到定直线x/1=y/-1=z/2
得证原命题.
定直线无数条,但方向向量都一样.
(此题不严谨,无法排除定直线在平面内的情况)
希望可以帮到你.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.