当前位置: > 设б是数域F上有限维向量空间V的一个线性变换,б的值域的维数dim(бV)=1 证明:...
题目
设б是数域F上有限维向量空间V的一个线性变换,б的值域的维数dim(бV)=1 证明:
(1)存在唯一的数c∈F,使得б²=cб
(2)如果c≠1,则 I-б为可逆的线性变换,这里的I是恒等变换

提问时间:2020-11-29

答案
取V的一组基,使得б在这组基下的表示矩阵A只有第一列非零,换句话说A=xy^T,x,y是列向量,y=[1,0,...,0]^T.
那么A^2=xy^Txy^T=(y^Tx)A,由于A非零,这个常数c=y^x只能是唯一的
然后直接验证(I-xy^T)(I+xy^T/(1-c))=I
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.