当前位置: > 用反证法证明: 若m,n都是奇数, 则关於x的方程x^2+mx+n-0没有整数根...
题目
用反证法证明: 若m,n都是奇数, 则关於x的方程x^2+mx+n-0没有整数根

提问时间:2020-11-29

答案
假设方程有整数根,不妨设为a
则有a²+am+n=0
即a(a+m)=-n
①当a为偶数的时候,方程左边为偶数,右边为奇数,矛盾
②当a为奇数的时候,a+m为偶数,此时方程左边为偶数,右边为奇数,仍然矛盾
故而假设不成立,即原方程五整数根
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.