当前位置: > 已知函数f(x)=x²+ax+b,且对任意的实数x都有f(1+x)=f(1-X)成立...
题目
已知函数f(x)=x²+ax+b,且对任意的实数x都有f(1+x)=f(1-X)成立
1.求实数a的值
2.利用单调性的定义证明函数f(x)在区间【1,+∞)上是增函数

提问时间:2020-11-28

答案
f(1+x)=(1+x)^2+a(1+x)+bf(1-x)=(1-x)^2+a(1-x)+b所以(1+x)^2+a(1+x)+b=(1-x)^2+a(1-x)+b1+2x+x^2+a+ax+b=1-2x+x^2+a-ax+b(4+2a)x=0恒成立所以4+2a=0a=-2f(x)=x^2-2x+b令m>n>=1则f(m)-f(n)=m^2-2m+b-n^2+2n-b=(m^2-n...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.