题目
数学题:已知数列{bn}是等差数列,b1=1,b1+b2+...+b10=145
已知数列{bn}是等差数列,b1=1,b1+b2+...+b10=145
设数列{an}的通项an=loga(1+1/bn),其中a大于0且a不等于1,记Sn是数列{an}的前n项和,试比较Sn与1/3loga bn+1的大小,并证明你的结论.
是1/3乘以…
已知数列{bn}是等差数列,b1=1,b1+b2+...+b10=145
设数列{an}的通项an=loga(1+1/bn),其中a大于0且a不等于1,记Sn是数列{an}的前n项和,试比较Sn与1/3loga bn+1的大小,并证明你的结论.
是1/3乘以…
提问时间:2020-11-28
答案
(1)Bn=3n-2
b1+b2+b3+.+b10=10b1+d+2d+.+9d
=10+45d=145
则d=3
因为Bn=b1+(n-1)*d
所以Bn=3n-2
(2)问题不够清楚.后面的是三分之一乘以logabn还是1除以3乘以logabn的积?
参考网上答案:
.设数列{bn}的公差为d,由题意得 ,∴bn=3n-2
(2)证明:由bn=3n-2知
Sn=loga(1+1)+loga(1+ )+…+loga(1+ )
=loga〔(1+1)(1+ )…(1+ )〕
而 logabn+1=loga ,于是,比较Sn与 logabn+1的大小 比较(1+1)(1+ )…(1+ )与 的大小.
取n=1,有(1+1)=
取n=2,有(1+1)(1+
推测:(1+1)(1+ )…(1+ )> (*)
①当n=1时,已验证(*)式成立.
②假设n=k(k≥1)时(*)式成立,即(1+1)(1+ )…(1+ )>
则当n=k+1时,
,即当n=k+1时,(*)式成立
由①②知,(*)式对任意正整数n都成立.
于是,当a>1时,Sn> logabn+1,当 0<a<1时,Sn< logabn+1
b1+b2+b3+.+b10=10b1+d+2d+.+9d
=10+45d=145
则d=3
因为Bn=b1+(n-1)*d
所以Bn=3n-2
(2)问题不够清楚.后面的是三分之一乘以logabn还是1除以3乘以logabn的积?
参考网上答案:
.设数列{bn}的公差为d,由题意得 ,∴bn=3n-2
(2)证明:由bn=3n-2知
Sn=loga(1+1)+loga(1+ )+…+loga(1+ )
=loga〔(1+1)(1+ )…(1+ )〕
而 logabn+1=loga ,于是,比较Sn与 logabn+1的大小 比较(1+1)(1+ )…(1+ )与 的大小.
取n=1,有(1+1)=
取n=2,有(1+1)(1+
推测:(1+1)(1+ )…(1+ )> (*)
①当n=1时,已验证(*)式成立.
②假设n=k(k≥1)时(*)式成立,即(1+1)(1+ )…(1+ )>
则当n=k+1时,
,即当n=k+1时,(*)式成立
由①②知,(*)式对任意正整数n都成立.
于是,当a>1时,Sn> logabn+1,当 0<a<1时,Sn< logabn+1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1I must finish to do my homework before supper.这句话有没有错?
- 2填空;在杂质半导体中,多数载流子的浓度取决于(),而少数载流子的浓度则与本征激法有很大关系.双极
- 3水果店苹果比梨多24箱,卖掉 6箱苹果后,苹果是梨的3倍,苹果和梨原来各多少箱?不用方程式用算式怎么做?
- 4How many books does she have?为什么第三人称单数用have?陈述句不是She has a book吗?
- 5she has never fully made up her mind what she wants
- 6有个角为45°的直角三角形是等腰三角形吗?
- 7would like todo还是ding
- 8已知x+5y=6,求x的平方+5xy+30y的值 .
- 9采用哪些措施探索宇宙的奥秘
- 10云雾缭绕是啥意思?
热门考点