题目
在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,△APB为直角三角形,则P点的坐标是______.
提问时间:2020-11-28
答案
(1)当以AB为直角边时,作AC⊥y轴于点C,BD⊥y轴于点D,
得C(0,2),D(0,-3)满足题意;
(2)以AB为底时,以AB为直径画圆,可与y轴交于点E,F两点,由直径对的圆周角是直角知,点E,F就是所求的点.
连接AE,BE,
由同角的余角相等得:∠CAE=∠ABE,
又∵∠ECA=∠BEA=90°,
∴△CAE∽△DEB,
∴CE:AE=AE:AB,即:AE2=CE•AB,
又在Rt△CEA中,有AE2=AC2+CE2,
∴AC2+CE2=CE•AB,
把AC=2,AB=5代入,
解得:CE=4或1,
即点E(0,1),点F(0,-2).
故本题答案为:(0,2)(0,-3)(0,1)(0,-2).
得C(0,2),D(0,-3)满足题意;
(2)以AB为底时,以AB为直径画圆,可与y轴交于点E,F两点,由直径对的圆周角是直角知,点E,F就是所求的点.
连接AE,BE,
由同角的余角相等得:∠CAE=∠ABE,
又∵∠ECA=∠BEA=90°,
∴△CAE∽△DEB,
∴CE:AE=AE:AB,即:AE2=CE•AB,
又在Rt△CEA中,有AE2=AC2+CE2,
∴AC2+CE2=CE•AB,
把AC=2,AB=5代入,
解得:CE=4或1,
即点E(0,1),点F(0,-2).
故本题答案为:(0,2)(0,-3)(0,1)(0,-2).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 160*60*120等于多少立方米
- 2What was your grandma/grandpa,怎么填
- 3was,a,famous,born,town,singer,the,in,small(.)
- 46/7*7/8与5/12的差的积的1/12是多少?怎么列示
- 5解三元一次方程组:(要有过程){x+y-z=0,x+2y+z=13,2x-3y+2z=5
- 6盐酸和碳酸氢钠反应是放热还是吸热?
- 7100以内既是7的倍数,又是6的倍数是多少?
- 8甲烷燃烧放出热量,水分解吸收热量,从化学键角度分析是和原因?
- 9左边一个甘右边一个耳朵旁念什么
- 103.The news coming from his hometown makes him feel sad..
热门考点