当前位置: > 在三角形ABC中,已知tan(A+B/2)=sinC,下面结论正确的是...
题目
在三角形ABC中,已知tan(A+B/2)=sinC,下面结论正确的是
  tanA*1/tanB=1       2.  0<sinA+sinB≤√2
   3.    sin^A+cos^B=1      4.cos^A+cos^B=sin^C

提问时间:2020-11-27

答案
(A+B)/2+ C/2=90°,
Sin(A+B)/2=cos C/2,cos(A+B)/2= Sin C/2,
tan[(A+B)/2]= Sin(A+B)/2 /cos(A+B)/2= cos C/2 /Sin C/2,
tan[(A+B)/2]=sinC可化为:
cos C/2 /Sin C/2=2 Sin C/2 cos C/2
cos C/2=2 Sin ²C/2 cos C/2
cos C/2(1-2 Sin ²C/2)=0,
cos C/2 cos C=0,
cos C=0,C=90°.
A+B=90°.
sinA+sinB= sinA+cosA
=√2sin(A+45°)
45°
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.