当前位置: > 设平面α∥平面β,AB、CD是两条异面直线,M、N分别是AB、CD的中点,且A、C∈α,B、D∈β,求证:MN∥平面α....
题目
设平面α∥平面β,AB、CD是两条异面直线,M、N分别是AB、CD的中点,且A、C∈α,B、D∈β,求证:MN∥平面α.

提问时间:2020-11-27

答案
证明:连接BC、AD,取BC的中点E,连接ME、NE,则ME是△BAC的中位线,
故ME∥AC,ME⊄α,∴ME∥α.
同理可证,NE∥BD.又α∥β,
设CB与DC确定的平面BCD与平面α交于直线CF,则CF∥BD,
∴NE∥CF.而NE⊄平面α,CF⊂α,∴NE∥α.
又ME∩NE=E,∴平面MNE∥α,
而MN⊂平面MNE,∴MN∥平面α.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.