当前位置: > 已知a,b,c是互不相等的实数,求证:由y=ax2+2bx+c,y=bx2+2cx+a,y=cx2+2ax+b确定的三条抛物线至少有一条与x轴有两个不同的交点....
题目
已知a,b,c是互不相等的实数,求证:由y=ax2+2bx+c,y=bx2+2cx+a,y=cx2+2ax+b确定的三条抛物线至少有一条与x轴有两个不同的交点.

提问时间:2020-11-26

答案
假设题设中的函数确定的三条抛物线都不与x有两个不同的交点
(即任何一条抛物线与x轴没有两个不同的交点),
由y=ax2+2bx+c,y=bx2+2cx+a,y=cx2+2ax+b得△1=(2b)2-4ac≤0,
2=(2c)2-4ab≤0,
3=(2a)2-4bc≤0.
同向不等式求和得,
4b2+4c2+4a2-4ac-4ab-4bc≤0,
∴2a2+2b2+2c2-2ab-2bc-2ac≤0,
∴(a-b)2+(b-c)2+(c-a)2≤0,
∴a=b=c,这与题设a,b,c互不相等矛盾,
因此假设不成立,从而命题得证.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.