当前位置: > 证明x→0时,arctanx→0.由于是同济高数无穷小比较节的习题,希望能给出不用后续连续性、导数概念的证明...
题目
证明x→0时,arctanx→0.由于是同济高数无穷小比较节的习题,希望能给出不用后续连续性、导数概念的证明

提问时间:2020-11-26

答案
可用定义:对于任意的正数ε(ε<1),要使得|arctanx-0|<ε,即-ε<arctanx<ε,因为arctanx单调增加,所以只要|x|<tanε即可.所以取δ=tanε,当0<|x|<δ时,恒有|arctanx-0|<ε.所以x→0时,arctanx→0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.