当前位置: > 已知函数f(x)=x2+px+q和g(x)=x+4x都是定义在A{x|1≤x≤52}上,对任意的x∈A,存在常数x0∈A,使得f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),则f...
题目
已知函数f(x)=x2+px+q和g(x)=x+
4
x
都是定义在A{x|1≤x≤
5
2
}上,对任意的x∈A,存在常数x0∈A,使得f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),则f(x)在A上的最大值为(  )
A.
5
2

B.
17
4

C. 5
D.
41
40

提问时间:2020-11-26

答案
由已知函数f(x)=x2+px+q和g(x)=x+
4
x
在区间[1,
5
2
]上都有最小值f(x0),g(x0),
又因为g(x)=x+
4
x
 在区间[1,
5
2
]上的最小值为g(2)=4,
f(x)min=f(2)=g(2)=4,
所以得:
p
2
=2
4+2p+q=4

即:
p=−4
q=8

所以得:f(x)=x2-4x+8≤f(1)=5.
故选C.
由已知很容易得到函数g(x)=x+
4
x
 在区间[1,
5
2
]上的最小值为g(2)=4,于是函数f(x)=x2+px+q也在x=2处取到最小值f(2),下面只需代入数值即可求解.

函数的最值及其几何意义.

本题考查函数的单调性,利用单调性求解函数在区间上最值的方法,考查二次函数,对勾函数等函数型的性质;考查函数与方程,转化与化归等数学思想方法.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.