题目
问一个用微分中值定理解决的证明题.
f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明存在t属于(0,1),使得f''(t)=2f'(t)/(1-t).
我找出了辅助函数G(x)=f'(x)(1-x)-f(x),但如何证明它在(0,1)内有两个值相同的点?
f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明存在t属于(0,1),使得f''(t)=2f'(t)/(1-t).
我找出了辅助函数G(x)=f'(x)(1-x)-f(x),但如何证明它在(0,1)内有两个值相同的点?
提问时间:2020-11-26
答案
换个思路
证明:
∵f(0)=f(1)=0
∴由微分中值定理知,存在ξ∈(0,1),使得f'(ξ)=0
令G(x)=(1-x)²f'(x),则G(ξ)=G(1)=0
∴由微分中值定理知,存在t∈(ξ,1),使G'(t)=0
即(1-t)²f''(t)-2(1-t)f'(t)=0
∵t<1
∴(1-t)f''(t)-2f'(t)=0
即f''(t)=2f'(t)/(1-t)
证毕
证明:
∵f(0)=f(1)=0
∴由微分中值定理知,存在ξ∈(0,1),使得f'(ξ)=0
令G(x)=(1-x)²f'(x),则G(ξ)=G(1)=0
∴由微分中值定理知,存在t∈(ξ,1),使G'(t)=0
即(1-t)²f''(t)-2(1-t)f'(t)=0
∵t<1
∴(1-t)f''(t)-2f'(t)=0
即f''(t)=2f'(t)/(1-t)
证毕
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF. (1)求证:AE=AF; (2)若∠B=60°,点E,F分别为BC和CD的中点,求证:△AEF为等边三角形.
- 2想对地球说些什么
- 3Learning how to study English well takes a long time .(改为反意疑问句)
- 4英文自我介绍,
- 5将60拆成甲乙丙丁四个数,使甲+1=乙-1=丙×1=丁÷1,求甲乙丙丁
- 6一种滑翔伞的形状是左右对称的四边形ABCD,其中∠A=150°,∠B=∠D=40°.求∠C的度数
- 7水滴石穿这个故事对你有什么启发,结合生活实际说说.怎么写?
- 8如图,菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,求∠EBF的度数.
- 9be sorry for 造2句
- 10某数与3的和的绝对值与该数的差为21.(列方程)
热门考点