题目
菱形ABCD,角BAD=60,AB=10,PA垂直ABCD所在的平面,PA=5,则P到DC的距离
则P到DC的距离为,和P到BD的距离为
则P到DC的距离为,和P到BD的距离为
提问时间:2020-11-26
答案
过点A作垂直于CD的垂线,垂足为E,连接PE.
不难得出DE=5,所以AE=5√3,因为PA垂直于面ABCD,所以P在面ABCD的投影为A点,AE垂直CD,所以PD垂直CD,所以PE=10.
同理P到BD的距离就是点P与过点A垂直于BD的垂足之间的距离,该垂足同时也是菱形对角线的交点,不难求出为10.
不难得出DE=5,所以AE=5√3,因为PA垂直于面ABCD,所以P在面ABCD的投影为A点,AE垂直CD,所以PD垂直CD,所以PE=10.
同理P到BD的距离就是点P与过点A垂直于BD的垂足之间的距离,该垂足同时也是菱形对角线的交点,不难求出为10.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 11.已知U=R,A={x|x^2+px+12=0},B={x|x^2-5x+q=0},若(CuA)交B={2},(CuB)交A=4,求A并B.( x^2表示x的平方,CuA表示A的补集)
- 2夜晚的天空写一段句子.
- 3如图,圆O的直径AB长为6,弦AC长为2,∠BAC的平分线交圆O于点D,求四边形ADBC的面积
- 4若a为整数,则a2+a一定能被( )整除. A.2 B.3 C.4 D.5
- 5一道语文题:描写海天一色的美丽画面的语句
- 6已知数列an的通项公式为an=lg3^n-lg2^(n+1)数列bn的通项bn=a3n,求bn是否为等差数列
- 7用数学归纳法证明不等式:1/n+1/n+1+1/n+2+…+1/n2>1(n∈N*且n>1).
- 8物理题 速度问题.
- 9设a=cos50°cos127°+cos40°cos37°,b=1-tan239°/1+tan239° c=√2/2√1-sin70°,则abc的大小关系是
- 10十点五十四 用英语怎么说呀