当前位置: > 证明(1+√3)^2n+(1-√3)^2n能被2^(n+1)整除(n∈N*)...
题目
证明(1+√3)^2n+(1-√3)^2n能被2^(n+1)整除(n∈N*)

提问时间:2020-11-26

答案
记a=√3,则a^2=3,由二项式展开,正负相消得
(1+√3)^2n+(1-√3)^2n=(1+3+2a)^n+(1+3-2a)^n=2^n[(2+a)^n+(2-a)^n]=2^(n+1)[2^n+2^(n-2)3C(n,2)+...]
因此能被2^(n+1)整除.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.