当前位置: > tanA,tanB是方程mx^2-2√(7m-3) x+2m=0的两个实数根,求:tan(A+B)的最值及取得最值时的实数m之值.-...
题目
tanA,tanB是方程mx^2-2√(7m-3) x+2m=0的两个实数根,求:tan(A+B)的最值及取得最值时的实数m之值.-

提问时间:2020-11-26

答案
首先7m-3≥0,m≠0,△≥0,算出m取值范围为1/2≤m≤3.
由于tanA、tanB为此方程两根,所以tanA+tanB=(2√(7m-3))/m,tanA*tanB=2m/m=2.
tan(A+B)=(tanA+tanB)/(1-tanA*tanB)= -(2√(7m-3))/m.接着算最值.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.