当前位置: > 如果三角形的三边a、b、c适合a2(b-c)+b2(c-a)+c2(a-b)=0,那么△ABC的形状是(  ) A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等边三角形...
题目
如果三角形的三边a、b、c适合a2(b-c)+b2(c-a)+c2(a-b)=0,那么△ABC的形状是(  )
A. 直角三角形
B. 等腰三角形
C. 等腰直角三角形
D. 等边三角形

提问时间:2020-11-26

答案
原式=a2b-a2c+b2c-a22+c2(a-b)
=ab(a-b)-c(a+b)(a-b)+c2(a-b)
=(a-b)[c2-c(a+b)+ab]
=(a-b)(c-a)(c-b),
即(a-b)(c-a)(c-b)=0
所以a=b或c=a或c=b
故△ABC是等腰三角形.
故选B.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.