题目
已知:三棱锥P-ABC,平面PAB⊥平面ABC,平面PAC⊥平面ABC,AE⊥平面PBC,E为垂足.
(1)求证:PA⊥平面ABC;
(2)当E为△PBC的垂心时,求证:△ABC是直角三角形.
(1)求证:PA⊥平面ABC;
(2)当E为△PBC的垂心时,求证:△ABC是直角三角形.
提问时间:2020-11-26
答案
证明:(1)如图所示,在平面ABC内取一点D,作DF⊥AC于F.
∵平面PAC⊥平面ABC,且交线为AC,∴DF⊥平面PAC.
又PA⊂平面PAC,∴DF⊥PA.
作DG⊥AB于G,同理可证:DG⊥PA.
∵DG、DF都在平面ABC内且DG∩DF=D,
∴PA⊥平面ABC;
(2)连结BE并延长交PC于H,
∵E是△PBC的垂心,∴PC⊥BH.
又已知AE是平面PBC的垂线,PC⊂平面PBC,
∴PC⊥AE.
又BH∩AE=E,∴PC⊥平面ABE.
又AB⊂平面ABE,∴PC⊥AB.
∵PA⊥平面ABC,∴PA⊥AB.
又PC∩PA=P,∴AB⊥平面PAC,
又AC⊂平面PAC,∴AB⊥AC,
即△ABC是直角三角形.
∵平面PAC⊥平面ABC,且交线为AC,∴DF⊥平面PAC.
又PA⊂平面PAC,∴DF⊥PA.
作DG⊥AB于G,同理可证:DG⊥PA.
∵DG、DF都在平面ABC内且DG∩DF=D,
∴PA⊥平面ABC;
(2)连结BE并延长交PC于H,
∵E是△PBC的垂心,∴PC⊥BH.
又已知AE是平面PBC的垂线,PC⊂平面PBC,
∴PC⊥AE.
又BH∩AE=E,∴PC⊥平面ABE.
又AB⊂平面ABE,∴PC⊥AB.
∵PA⊥平面ABC,∴PA⊥AB.
又PC∩PA=P,∴AB⊥平面PAC,
又AC⊂平面PAC,∴AB⊥AC,
即△ABC是直角三角形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1x²=x x的平方等于x,求x的值(一个一个写出来)
- 2your are my best friend so you can lean on
- 3英语自我介绍100字 好一点
- 4晚上,和风细雨悄然而至.根据意思写词语.
- 5一支钢笔的价钱是一支圆柱笔价钱的五倍买四支钢笔的钱能买多少支圆珠笔?.cn
- 6It was England against France.
- 7what _____your parents do?a.do b.is c.are
- 8中描写农民辛勤劳动的诗句
- 9从海水中得到金属镁。下面是从海水中提取镁的简单流程。
- 10甲地到乙地360千米,一辆轿车13:30从甲地出发,16:30到达乙地,这辆轿车平均每小时行多少千米?
热门考点