题目
在△ABC中,AB=AC,∠BAC=80°,P在△ABC中,∠PBC=10°,∠PCB=20°,则∠PAB的度数为( )
A. 50°
B. 60°
C. 70°
D. 65°
A. 50°
B. 60°
C. 70°
D. 65°
提问时间:2020-11-26
答案
如图,作P关于AC的对称点P′,连接AP′、P′C、PP′,
则P′C=PC,ACP′=∠ACP.
∵AB=AC,∠BAC=80°,
∴∠ABC=∠ACB=50°,
又∵∠PBC=10°,∠PCB=20°,
∴∠BPC=150°,∠ACP=30°,∠ACP′=30°,
∴∠PCP′=60°,
∴△PCP′是等边三角形,
∴PP′=PC,∠P′AC=∠PAC,∠P′PC=60°,
∴∠BPP′=360°-150°-60°=150°,
∴∠BPP′=∠BPC,
∴△PBP′≌△PBC,
∴∠PBP′=∠PBC=10°,
∴∠P′BC=20°,∠ABP′=30° 又∠ACP′=30°,
∴∠ABP′=∠ACP′,
∴A、B、C、P′四点共圆,
∴∠PAC=∠P′AC=∠P′BC=20°,
∴∠PAB=60°.
故选B.
则P′C=PC,ACP′=∠ACP.
∵AB=AC,∠BAC=80°,
∴∠ABC=∠ACB=50°,
又∵∠PBC=10°,∠PCB=20°,
∴∠BPC=150°,∠ACP=30°,∠ACP′=30°,
∴∠PCP′=60°,
∴△PCP′是等边三角形,
∴PP′=PC,∠P′AC=∠PAC,∠P′PC=60°,
∴∠BPP′=360°-150°-60°=150°,
∴∠BPP′=∠BPC,
∴△PBP′≌△PBC,
∴∠PBP′=∠PBC=10°,
∴∠P′BC=20°,∠ABP′=30° 又∠ACP′=30°,
∴∠ABP′=∠ACP′,
∴A、B、C、P′四点共圆,
∴∠PAC=∠P′AC=∠P′BC=20°,
∴∠PAB=60°.
故选B.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1What effect do (or can) advertisements have on young children?
- 2形容植物生长繁茂的成语,
- 3请问praise的用法,表扬某人某事,怎么翻译?
- 4Q1.三个连续整数两两相乘后,求和得362,求这三个数
- 5关于匀强电场的
- 6There are no desks in the classroom变为同义句 There____ ____desks in the classroom
- 7如图,已知过△ABC的顶点A,在∠BAC内部任意作一条射线,过B、C分别作此射线的垂线段BD、CE,M为BC边中点.求证:MD=ME.
- 8鸟为什么能在天空飞啊
- 92003年1月7日上午9:45,我国设计建造的第一艘跨海火车渡轮“粤海铁1号”从广东湛江下水驶向海南海口.“粤海铁1号”的设计时速不低于15海里(1海里等于1.85km).每50min便可渡过琼州海峡
- 10把函数y=2x^2-4x+5的图象按向量a平移得到y=2x^2的图象且a⊥b,c=(1,-1),b*c=4,求b.字母a.b.c均为向量!