当前位置: > 高二用归纳法证明不等式的一道题...
题目
高二用归纳法证明不等式的一道题
Ai>0(i=1,2,3...n) 且A1 +A2+.+An=1
证明A1^2+A2^2+...+An^2>=1/n (n>=2 属于整数)

提问时间:2020-11-26

答案
A1 +A2+.+An=1
(A1 +A2+.+An)^2=A1^2+A2^2+...+An^2+2(A1A2+A2A3+……)=1 (1)
记A=A1^2+A2^2+...+An^2 = n (A1^2+A2^2+...+An^2)/ n
B=2(A1A2+A2A3+……)
由基本公式 a^2+b^2>=2ab
A1^2+A2^2>=2A1A2
A2^2+A3^2>=2A2A3
……
上述n-1个等式相加
得 (n-1)A>=B (2)
综合(1)和(2)得到A1^2+A2^2+...+An^2>=1/n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.