当前位置: > 若a,b,c为三角形ABC的三边,求证ab+bc+ca小于等于a^+b^+c^小于2*(ab+bc+ca)...
题目
若a,b,c为三角形ABC的三边,求证ab+bc+ca小于等于a^+b^+c^小于2*(ab+bc+ca)
是个连续的不等式,应该可以分开解.

提问时间:2020-11-25

答案
ab+bc+ca<=a^2+b^2+c^2<2(ab+bc+ca)
证:先证ab+bc+ca<=a^2+b^2+c^2
同时乘2,即证2ab+2bc+2ca<=2a^2+2b^2+2c^2
因为(a-b)^2+(b-c)^2+(a-c)^2>=0
得证
再证a^2+b^2+c^2<2(ab+bc+ca)
因a,b,c表示三角形的三边
|a-b|<c--->a²-2ab+b²<c²
|b-c|<a--->b²-2bc+c²<a²
|c-a|<b--->c²-2ca+a²<b²
三式相加,得证
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.