题目
在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点. 求(1)求证EF//平面ABC1D1
(2)求证EF垂直于B1C (3)求三棱锥B1-EFC的体积采用空间直角坐标系怎么写?
(2)求证EF垂直于B1C (3)求三棱锥B1-EFC的体积采用空间直角坐标系怎么写?
提问时间:2020-11-25
答案
证明:1.连接BD1
在△BDD1中,∵EF分别为DD1、DB的中点,∴EF//D1B.
∵D1B∈面ABC1D1,∴EF//平面ABC1D1
2.连接BC1
∵□ABCD-A1B1C1D1为正方体,∴D1C1⊥面BCC1B1.
∵B1C面BCC1B1,∴D1C1⊥B1C.
∵BCC1B1为正方形,∴BC1⊥B1C.
∵D1C1,BC1∈面ABC1D1,∴B1C⊥面 ABC1D1
.∵BD1∈面ABC1D1 ,∴B1C ⊥BD1.
又∵EF//D1B,∴EF垂直于B1C
在△BDD1中,∵EF分别为DD1、DB的中点,∴EF//D1B.
∵D1B∈面ABC1D1,∴EF//平面ABC1D1
2.连接BC1
∵□ABCD-A1B1C1D1为正方体,∴D1C1⊥面BCC1B1.
∵B1C面BCC1B1,∴D1C1⊥B1C.
∵BCC1B1为正方形,∴BC1⊥B1C.
∵D1C1,BC1∈面ABC1D1,∴B1C⊥面 ABC1D1
.∵BD1∈面ABC1D1 ,∴B1C ⊥BD1.
又∵EF//D1B,∴EF垂直于B1C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点