当前位置: > 求证:三角形的一条中位线与第三边上的中线互相平分....
题目
求证:三角形的一条中位线与第三边上的中线互相平分.

提问时间:2020-11-25

答案
已知:在△ABC中,中位线EF与中线AD相交于点O,
求证:AD与EF互相平分.
证明:连接DE、DF,
∵点D、E分别是BC、AB的中点,
∴DE∥AC,
同理得DF∥AB,
∴四边形AEDF是平行四边形,
∴AD与EF互相平分.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.