当前位置: > 证明方程:2^x-x^2=1有且只有三个实数根....
题目
证明方程:2^x-x^2=1有且只有三个实数根.

提问时间:2020-11-25

答案
设f(x)=2^x-x^2-1;
f‘(x)=ln2*2^x-2x;
f''(x)=ln2*ln2*2^x-2;单调,只有一个零点.
故f'(x)至多有两个零点.(roll定理,每两个零点间都有一个导数的零点)
所以f(x)至多三个零点.(理由同上)
当x趋于负无穷时f趋于负无穷.
f(0)=0,f(1)=0,f(2)=-1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.