当前位置: > 在三角形ABC中,已知(a^2+B^2)sin(A-B)=(a^2-b^2)sin(A+B),试判断这三角形的形状...
题目
在三角形ABC中,已知(a^2+B^2)sin(A-B)=(a^2-b^2)sin(A+B),试判断这三角形的形状

提问时间:2020-11-25

答案
(a^2+b^2)sin(A-B)=(a^2-b^2)sin(A+B),
(sin^A+sin^B)sin(A-B)=(sin^A-sin^B)sin(A+B)
sin^A*(sin(A+B)-sin(A-B))=sin^B*(sin(A-B)+sin(A+B))
sin^A*2cosAsinB=sin^B*2sinAcosB
sin^A*2cosAsinB-sin^B*2sinAcosB=0
sinAsinB(sin2A-sin2B)=0
sin2A=sin2B
2A=2B 或2A+2B=180度
A=B或A+B=90度
故△ABC是等腰三角形或直角三角形
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.