当前位置: > a、b、c是不全相等的正数,求证:a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)>6abc...
题目
a、b、c是不全相等的正数,求证:a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)>6abc

提问时间:2020-11-24

答案
a(b^2+c^2)≥a*2bc=2abc,b(c^2+a^2)≥b*2ac=2abc,c(a^2+b^2)≥c*2ab=2abc,则三式相加得 a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)≥6abc 又a、b、c是不全相等的正数,故等号不能取到.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.