当前位置: > 已知函数f(x)=ax3-6ax2+b(x∈[-1,2])的最大值为3,最小值为-29,求a、b的值....
题目
已知函数f(x)=ax3-6ax2+b(x∈[-1,2])的最大值为3,最小值为-29,求a、b的值.

提问时间:2020-11-24

答案
函数f(x)=ax3-6ax2+b
∴f′(x)=3ax2-12ax=3a(x2-4x)
令f′(x)=3ax2-12ax=3a(x2-4x)=0,显然a≠0,否则f(x)=b为常数,矛盾,
∴x=0,若a>0,列表如下:

由表可知,当x=0时f(x)取得最大值∴b=3
又f′(0)=-29,则f(2)<f(0),这不可能,
∴f(2)=8a-24a+3=-16a+3=-29,∴a=2
若a<0,同理可得a=-2,b=-29
故答案为:a=2,b=3或a=-2,b=-29
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.