当前位置: > 如图,点O在∠APB的平分线上,⊙O与PA相切于点C. (1)求证:直线PB与⊙O相切; (2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长....
题目
如图,点O在∠APB的平分线上,⊙O与PA相切于点C.

(1)求证:直线PB与⊙O相切;
(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.

提问时间:2020-11-24

答案
(1)证明:连接OC,作OD⊥PB于D点.
∵⊙O与PA相切于点C,
∴OC⊥PA.
∵点O在∠APB的平分线上,OC⊥PA,OD⊥PB,
∴OD=OC.
∴直线PB与⊙O相切;
(2)设PO交⊙O于F,连接CF.
∵OC=3,PC=4,∴PO=5,PE=8.
∵⊙O与PA相切于点C,
∴∠PCF=∠E.
又∵∠CPF=∠EPC,
∴△PCF∽△PEC,
∴CF:CE=PC:PE=4:8=1:2.
∵EF是直径,
∴∠ECF=90°.
设CF=x,则EC=2x.
则x2+(2x)2=62
解得x=
6
5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.