当前位置: > 若抛物线y^2=4x 的焦点是F ,准线是l ,点M(4,4) 是抛物线上一点,则经过点M 、F 且与l 相切的圆共有几个...
题目
若抛物线y^2=4x 的焦点是F ,准线是l ,点M(4,4) 是抛物线上一点,则经过点M 、F 且与l 相切的圆共有几个
答案是两个,

提问时间:2020-11-24

答案
抛物线y²=4x的焦参数p=2,所以F(1,0),直线l:x=-1,即x+1=0,
设经过点M(4,4)、F(1,0),且与直线l相切的圆的圆心为Q(g,h),
则半径为Q到l的距离,即1+g,所以圆的方程为(x-g)²+(y-h)²=(1+g)²,
将M、F的坐标代入,得(4-g)²+(4-h)²=(1+g)²,(1-g)²+(0-h)²=(1+g)²,
即h²-8h+1=10g①,h²=4g②,②代入①,得3h²+16h-2=0,
解得h1=(√70-8)/3,h2=-(√70+8)/3,(经检验无增根)
代入②得g1=(67-8√70)/18,g2=(67+8√70)/18,
所以满足条件的圆有两个:
(x-(67-8√70)/18)²+(y-(√70-8)/3)²=((85-8√70)/18)²,
(x-(67+8√70)/18)²+(y+(√70+8)/3)²=((85+8√70)/18)².
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.