题目
若抛物线y^2=4x 的焦点是F ,准线是l ,点M(4,4) 是抛物线上一点,则经过点M 、F 且与l 相切的圆共有几个
答案是两个,
答案是两个,
提问时间:2020-11-24
答案
抛物线y²=4x的焦参数p=2,所以F(1,0),直线l:x=-1,即x+1=0,
设经过点M(4,4)、F(1,0),且与直线l相切的圆的圆心为Q(g,h),
则半径为Q到l的距离,即1+g,所以圆的方程为(x-g)²+(y-h)²=(1+g)²,
将M、F的坐标代入,得(4-g)²+(4-h)²=(1+g)²,(1-g)²+(0-h)²=(1+g)²,
即h²-8h+1=10g①,h²=4g②,②代入①,得3h²+16h-2=0,
解得h1=(√70-8)/3,h2=-(√70+8)/3,(经检验无增根)
代入②得g1=(67-8√70)/18,g2=(67+8√70)/18,
所以满足条件的圆有两个:
(x-(67-8√70)/18)²+(y-(√70-8)/3)²=((85-8√70)/18)²,
(x-(67+8√70)/18)²+(y+(√70+8)/3)²=((85+8√70)/18)².
设经过点M(4,4)、F(1,0),且与直线l相切的圆的圆心为Q(g,h),
则半径为Q到l的距离,即1+g,所以圆的方程为(x-g)²+(y-h)²=(1+g)²,
将M、F的坐标代入,得(4-g)²+(4-h)²=(1+g)²,(1-g)²+(0-h)²=(1+g)²,
即h²-8h+1=10g①,h²=4g②,②代入①,得3h²+16h-2=0,
解得h1=(√70-8)/3,h2=-(√70+8)/3,(经检验无增根)
代入②得g1=(67-8√70)/18,g2=(67+8√70)/18,
所以满足条件的圆有两个:
(x-(67-8√70)/18)²+(y-(√70-8)/3)²=((85-8√70)/18)²,
(x-(67+8√70)/18)²+(y+(√70+8)/3)²=((85+8√70)/18)².
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1如图所示,平板车放在光滑水平面上,一个人从车的左端加速向右端跑动,设人受到的摩擦力为f,平板车受到的摩擦力为f′,下列说法正确的是( ) A.f、f′均做负功 B.f、f′均做正功
- 21mol固体NaHSO4含有的阴阳离子总数为2NA,这里的阴阳离子分别指什么?
- 3peter since better than john(保持句意相同)
- 4hang有被动语态吗
- 5河海指哪条河
- 6简爱读后感 500字
- 7制取MgCl2的三种方法
- 8甲、乙两地相距100公里,一汽车以每小时40公里的速度从甲地开往乙地,写出汽车距乙地的距离S(公里)与时间t(小时)的函数关系式s=_(可不写出自变量的取值范围).
- 9一碗鸡汤
- 10宋濂尝与客饮