当前位置: > 若多项式x^2+ax-12,能分解成两个整系数的一次因式的乘积,试确定符合条件的整数a的值....
题目
若多项式x^2+ax-12,能分解成两个整系数的一次因式的乘积,试确定符合条件的整数a的值.

提问时间:2020-11-24

答案
由已知,不妨设:x²+ax-12=(x+m)(x+n),其中:m、n为整数.
有:x²+ax-12=x²+(m+n)x+mn
得:
m+n=a……………………(1)
mn=-12……………………(2)
由韦达定理,知m、n是方程y²-ay-12=0的解
y²-ay-12=0
y²-2×(a/2)y+(a/2)²-(a/2)²-12=0
(y-a/2)²=(a/2)²+12
(y-a/2)²=(a²+48)/4
y=[a±√(a²+48)]/2
可见,必有:a±√(a²+48)为偶数
不妨设:a±√(a²+48)=2k,k∈N
(a-2k)²=[±√(a²+48)]²
a²-4ak+4k²=a²+48
-4ak+4k²=48
a=(k²-12)/k
当k=±1时,a=±11
当k=±2时,a=±4
当k=±3时,a=±1
当k=±4时,a=±1
当k=±5时,a=±23/5
显然,当|k|>4时,a都将不再是整数.
故,可能的a值是:±1、±4、±11.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.