当前位置: > 已知n维向量a1,a2,a3,a4,a5线性无关,A是n阶可逆矩阵,证明Aa1,Aa2,Aa3,Aa4,Aa5线...
题目
已知n维向量a1,a2,a3,a4,a5线性无关,A是n阶可逆矩阵,证明Aa1,Aa2,Aa3,Aa4,Aa5线

提问时间:2020-11-24

答案
因为 (Aa1,Aa2,Aa3,Aa4,Aa5) = A(a1,a2,a3,a4,a5)
且A可逆
所以 r(Aa1,Aa2,Aa3,Aa4,Aa5) =r[ A(a1,a2,a3,a4,a5)] = r(a1,a2,a3,a4,a5) = 5
所以 Aa1,Aa2,Aa3,Aa4,Aa5 线性无关.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.