题目
在平面四边形ABCD中,已知AB=BC=CD=a,角ABC=90度,角BCD=135度,沿AC将四边形折成直二面角B-AC-D,求二面角B-AD-C的大小 要两种方法解题 要是3种 再加50分
提问时间:2020-11-24
答案
先明确原图特征:△ABC为等腰直角三角形,△ACD为直角三角形,且AC=√2a,AD=√3a
沿AC将四边形折成直二面角B-AC-D,又CD⊥AC(两垂直平面的交线),所以CD⊥平面ABC
方法一:
设AC中点E,连接BE,过E做AD垂线,垂足F,
由DC⊥平面ABC,得 DC垂直BE
又AB=BC,AE=CE,得 BE垂直AC
所以BE垂直平面ADC,所以 BE垂直AD
又EF垂直AD,所以AD垂直平面BEF,AD⊥BF
所以 ∠BFE就是所求角,
其中∠BEF=90°,BE=√2/2a,EF=√6/6a,
所以tan∠BFE=√3,∠BFE=60°
方法二:
在ABC平面内,过C做AC垂线,交AB延长线为G,(可在翻折前后图形中对比观察)
过C做AD垂线,垂足为H,连接GH.
可证∠GHC即所求角,(方法与上一种解法类似)
在RT△GCH中,GC=√2a,CH=√2a/√3,
所以tan∠GCH=GC/CH=√3,∠GHC=60°
方法三:
先按方法二过程做辅助线,再以CA,CG,CD方向为x,y,z轴正方向建立空间直角坐标系,
用空间向量的方法求解,具体过程就不说了
沿AC将四边形折成直二面角B-AC-D,又CD⊥AC(两垂直平面的交线),所以CD⊥平面ABC
方法一:
设AC中点E,连接BE,过E做AD垂线,垂足F,
由DC⊥平面ABC,得 DC垂直BE
又AB=BC,AE=CE,得 BE垂直AC
所以BE垂直平面ADC,所以 BE垂直AD
又EF垂直AD,所以AD垂直平面BEF,AD⊥BF
所以 ∠BFE就是所求角,
其中∠BEF=90°,BE=√2/2a,EF=√6/6a,
所以tan∠BFE=√3,∠BFE=60°
方法二:
在ABC平面内,过C做AC垂线,交AB延长线为G,(可在翻折前后图形中对比观察)
过C做AD垂线,垂足为H,连接GH.
可证∠GHC即所求角,(方法与上一种解法类似)
在RT△GCH中,GC=√2a,CH=√2a/√3,
所以tan∠GCH=GC/CH=√3,∠GHC=60°
方法三:
先按方法二过程做辅助线,再以CA,CG,CD方向为x,y,z轴正方向建立空间直角坐标系,
用空间向量的方法求解,具体过程就不说了
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1某专业学校男生占全校学生的33%,比女生少340人,女生有多少人?
- 2一个数的40%比它的21%多2.4,求这各数.(列方程)
- 3共模抑制比是放大电路的差模电压放大倍数和共模电压放大倍数之比.电路的共模抑制比越大,表明电路的___能力越强
- 4已知tan (a /2) =3 ,则 cosa 等于
- 5(x+y)(x+y+1)=56,(x-y)(x-y+1)=12如何解这个方程组?
- 6“又杂植兰桂竹木于庭,旧时栏,亦遂增胜.”的翻译
- 7we went to beijing by plane to watch the grand military parade on national day.保持句意不变
- 8110kV=___V=___mV.
- 9一道关于基本不等式的题目
- 10有6个数排成一行,它们的平均数是27,已知前4个数的平均数是23,后3个数的平均数34,第4个数是_.