当前位置: > 已知平面向量a=(根号3,-1),b=(12,根号32),若存在不同时为0的实数KT,...
题目
已知平面向量a=(根号3,-1),b=(1\2,根号3\2),若存在不同时为0的实数KT,
使得向量X=A+(T^2-3)B,向量Y=-KA+TB,且向量X⊥向量Y,求函数关系式K=F(T)及其单调区间?

提问时间:2020-11-24

答案
x=a+(t^2-3)b
=(√3,-1)+((t^2-3)/2,√3(t^2-3)/2)
=((t^2-3+2√3)/2,(√3t^2-3√3-2)/2)
y=-ka+tb
=(-√3k,k)+(t/2,√3t/2)
=((t-2√3k)/2,(2k+√3t)/2 )
因为x⊥y
所以 x·y=0
即(t^2-3+2√3)/2 * (t-2√3k)/2 + (√3t^2-3√3-2)/2 * (2k+√3t)/2 =0
整理得 4k=t^3-3t
k=(t^3-3t)/4
所以 k=f(t)=(t^3-3t)/4
利用导数求f(t)的单调区间
f ' (t) =3(t^2-3)/4
令 f ' (t ) >0 得 t1
令 f ' (t)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.