当前位置: > 已知关于x的方程(k-1)x^2+(2k-3)x+k+1=0有两个不相等的实数根x1和x2....
题目
已知关于x的方程(k-1)x^2+(2k-3)x+k+1=0有两个不相等的实数根x1和x2.
(1)求k的取值范围
(2)是否存在实数K,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由

提问时间:2020-11-23

答案
1、由题可得:k-1≠0 则k≠1
△=(2k-3)²-4(k-1)(k+1)=4k²-12k+9-4k²+4= -12k+13>0
则k<13/12 且k≠1
2、由韦达定理得:
x1+x2= -(2k-3)/(k-1)=0
则:-(2k-3)=k-1
3k=2
k=2/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.