当前位置: > 设A为n阶矩阵,那么对任何n维列向量b,方程Ax=b都有解的充要条件为什么答案是R(A)=n,而不是R(A)=R(A,b)...
题目
设A为n阶矩阵,那么对任何n维列向量b,方程Ax=b都有解的充要条件为什么答案是R(A)=n,而不是R(A)=R(A,b)

提问时间:2020-11-23

答案
因为对任何n维列向量b,方程组Ax=b都有解.
此时n维列向量b分两种情况:
1)b=0,则AX=0.这是齐次线性方程组,R(A)=n,系数行列式IAI不等于0,即必有零解.
2)b不=0,则AX=b.这是非齐次线性方程组,利用克拉默法则,方程组有解的条件是系数行列式IAI不等于0,故R(A)=n.
而R(A)=R(A,b)仅仅是针对非齐次线性方程组.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.