当前位置: > 设数列{an}的前n项和Sn=n²;/2+3n/2(2)令bn=1/(ana(n+1)),求{bn}的通项公式...
题目
设数列{an}的前n项和Sn=n²;/2+3n/2(2)令bn=1/(ana(n+1)),求{bn}的通项公式
(3)求和Tn=b1+b2+...+bn

提问时间:2020-11-23

答案
1)a1=S1=1/2+3/2=2.
当n>=2时,an=Sn-S(n-1)=(1/2)n^2+(3/2)n-(1/2)(n-1)^2-(3/2)(n-1)=n+1,a1=2也适合此式.
所以,数列{an}的通项公式是an=n+1,n为正整数.
(2)数列{bn}的通项公式为:bn=1/[ana(n+1)]=1/[(n+1)(n+2)=1/(n+1)-1/(n+2),n为正整数.
(3)Tn=b1+b2+…+bn
=1/2-1/3+1/3-1/4+…+1/(n+1)-1/(n+2)
=1/2-1/(n+2)
=n/(2n+4)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.