题目
终边在x轴y轴上的角的集合怎么表示,为什么?
提问时间:2020-11-23
答案
1、终边在x轴上角的集合 :{α丨α=k180° k为整数}
与0°终边相同+与180°终边相同的角 周期为360°
{α丨α=k360° k为整数} 并{α丨α=k360°+180° k为整数}
2、终边在y轴上的角的集合 :{β丨β=k180°+90° k为整数}
与90°终边相同+与270°终边相同的角 且周期为360°
{α丨α=k360°+90° k为整数}并 {α丨α=k360°+270° k为整数}
分别对k取奇数和偶数 取得他们各自的并集 得到答案
用弧度表示 {α丨α=kπ ,k为整数 }
{α丨α=kπ+π/2 ,k为整数 }
终边在x轴上角包括终边在x正半轴的角和终边在x负半轴的角
他们分别与弧度为0和弧度为π的终边相同 而三角函数的周期为 2π
故可以表示为集合如下:
终边在x正半轴上角:{α1丨α1=2kπ,k为整数}
终边在x负半轴上角:{α2丨α2=2kπ+π=(2k+1)π,k为整数}
2k,2k+1刚好表示的是整数的奇数和偶数的形式 他们的并集为整数
即:{α1丨α1=2kπ,k为整数}并{α2丨α2=2kπ+π=(2k+1)π,k为整数}
={α丨α=kπ ,k为整数 }
终边在y轴上同理
终边在y轴上角包括终边在y正半轴的角和终边在y负半轴的角
他们分别与弧度为π/2和弧度为3π/2的终边相同 而三角函数的周期为 2π
故可以表示为集合如下:
终边在x正半轴上角:{β1丨β1=2kπ+π/2,k为整数}
终边在x负半轴上角:{β2丨β2=2kπ+3π/2=(2k+1)π+π/2,k为整数}
2k,2k+1刚好表示的是整数的奇数和偶数的形式 他们的并集为整数
即:
{β1丨β1=2kπ+π/2,k为整数}并{β2丨β2=2kπ+3π/2=(2k+1)π+π/2,k为整数}
={β丨β=kπ +π/2,k为整数 }
与0°终边相同+与180°终边相同的角 周期为360°
{α丨α=k360° k为整数} 并{α丨α=k360°+180° k为整数}
2、终边在y轴上的角的集合 :{β丨β=k180°+90° k为整数}
与90°终边相同+与270°终边相同的角 且周期为360°
{α丨α=k360°+90° k为整数}并 {α丨α=k360°+270° k为整数}
分别对k取奇数和偶数 取得他们各自的并集 得到答案
用弧度表示 {α丨α=kπ ,k为整数 }
{α丨α=kπ+π/2 ,k为整数 }
终边在x轴上角包括终边在x正半轴的角和终边在x负半轴的角
他们分别与弧度为0和弧度为π的终边相同 而三角函数的周期为 2π
故可以表示为集合如下:
终边在x正半轴上角:{α1丨α1=2kπ,k为整数}
终边在x负半轴上角:{α2丨α2=2kπ+π=(2k+1)π,k为整数}
2k,2k+1刚好表示的是整数的奇数和偶数的形式 他们的并集为整数
即:{α1丨α1=2kπ,k为整数}并{α2丨α2=2kπ+π=(2k+1)π,k为整数}
={α丨α=kπ ,k为整数 }
终边在y轴上同理
终边在y轴上角包括终边在y正半轴的角和终边在y负半轴的角
他们分别与弧度为π/2和弧度为3π/2的终边相同 而三角函数的周期为 2π
故可以表示为集合如下:
终边在x正半轴上角:{β1丨β1=2kπ+π/2,k为整数}
终边在x负半轴上角:{β2丨β2=2kπ+3π/2=(2k+1)π+π/2,k为整数}
2k,2k+1刚好表示的是整数的奇数和偶数的形式 他们的并集为整数
即:
{β1丨β1=2kπ+π/2,k为整数}并{β2丨β2=2kπ+3π/2=(2k+1)π+π/2,k为整数}
={β丨β=kπ +π/2,k为整数 }
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点