题目
如图,直角梯形ABCD中,AD∥BC,∠A=90°,AB=AD=6,DE⊥DC交AB于E,DF平分∠EDC交BC于F,连接EF.
(1)证明:EF=CF;
(2)当tan∠ADE=
时,求EF的长.
(1)证明:EF=CF;
(2)当tan∠ADE=
1 |
3 |
提问时间:2020-11-23
答案
(1)证明:过D作DG⊥BC于G.
由已知可得四边形ABGD为正方形,
∵DE⊥DC.
∴∠ADE+∠EDG=90°=∠GDC+∠EDG,
∴∠ADE=∠GDC.
又∵∠A=∠DGC且AD=GD,
∴△ADE≌△GDC,
∴DE=DC且AE=GC.
在△EDF和△CDF中
,
∴△EDF≌△CDF,
∴EF=CF;
(2)∵tan∠ADE=
=
,
∴AE=GC=2.
∴BC=8,
BE=4,设CF=x,则BF=8-CF=8-x,
在Rt△BEF中,由勾股定理得:x2=(8-x)2+42,
解得x=5,
即EF=5.
由已知可得四边形ABGD为正方形,
∵DE⊥DC.
∴∠ADE+∠EDG=90°=∠GDC+∠EDG,
∴∠ADE=∠GDC.
又∵∠A=∠DGC且AD=GD,
∴△ADE≌△GDC,
∴DE=DC且AE=GC.
在△EDF和△CDF中
|
∴△EDF≌△CDF,
∴EF=CF;
(2)∵tan∠ADE=
AE |
AD |
1 |
3 |
∴AE=GC=2.
∴BC=8,
BE=4,设CF=x,则BF=8-CF=8-x,
在Rt△BEF中,由勾股定理得:x2=(8-x)2+42,
解得x=5,
即EF=5.
(1)过D作DG⊥BC于G,由已知可得四边形ABGD为正方形,然后利用正方形的性质和已知条件证明△ADE≌△GDC,接着利用全等三角形的性质证明△EDF≌△CDF,
(2)由tan∠ADE=
根据已知条件可以求出AE=GC=2.设EF=x,则BF=8-CF=8-x,BE=4.在Rt△BEF中根据勾股定理即可求出x,也就求出了EF.
(2)由tan∠ADE=
1 |
3 |
解直角三角形;全等三角形的判定;勾股定理;直角梯形.
本题考查梯形、正方形、直角三角形的相关知识.解决此类题要懂得用梯形的常用辅助线,把梯形分割为矩形和直角三角形,从而由矩形和直角三角形的性质来求解.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1高铁酸钾中的铁是什么化合价
- 2一只船在一条180千米的河上而行,它顺水航行6时,逆水航行9小时,若有一木箱靠水流动而飘,走完同样长的距
- 3give ( them each )(each them )an apple
- 4有两根铁丝,第一根长26米,第二根长18米,两根各截去同样长的一段后,则第二根剩下的是第一根的七分之三,两根铁丝各截去多少米?
- 5矩阵运算
- 611/17的分子分母减去同一个数后是4/7,这个数是多少?
- 7年数为48年,折现率为7%的年金现值系数是多少?
- 8因式分解:1.9(a-b)²+12(a-b)+4 2.(a-b)³-4ab(b-a)
- 9sheng wu jian dande!
- 10妈妈将10000元存入银行,存期2年,年利率为2.25%,到期取息时,需扣除利息税20%,那么税后可得利息多少元?
热门考点