当前位置: > 证明:设三角形的外接圆的半径是R,则a=2RsinA,b=2RsinB,c=2RsinC...
题目
证明:设三角形的外接圆的半径是R,则a=2RsinA,b=2RsinB,c=2RsinC
怎么证明a=2RsinA,b=2RsinB,c=2RsinC

提问时间:2020-11-23

答案
设外接圆圆心为O,连接BO并延长交圆于D点
则可知在三角形BCD中,角BCD是直角,BD=2R,角BDC=角A,所以a=2RsinA
同理可得b=2RsinB,c=2RsinC
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.