题目
简单不等式证明
1、a、b属于正实数,证:1/a+1/b≥4/(a+b)
2、a、b属于正实数,证:a²/b≥2a-b
3、a、b属于实数,证:2(a²+b²)≥(a+b)²
4、a、b属于实数,证:(a/b)²≥2a/b-1
5、a、b属于实数,证:a/b+b/a≥2
1、a、b属于正实数,证:1/a+1/b≥4/(a+b)
2、a、b属于正实数,证:a²/b≥2a-b
3、a、b属于实数,证:2(a²+b²)≥(a+b)²
4、a、b属于实数,证:(a/b)²≥2a/b-1
5、a、b属于实数,证:a/b+b/a≥2
提问时间:2020-11-23
答案
1、 (a-b)²≥0
a²+b²-2ab≥0
a²+b²≥2ab
a²+b²+2ab≥4ab
(a+b)²≥4ab
∵ a,b都是正实数
∴ 在不等式两边同除以(a+b)ab,不等号方向不变.
即:(a+b)/ab≥4(a+b)
得:1/a+1/b≥4/(a+b)
2、 (a-b)²≥0
a²+b²-2ab≥0
a²≥2ab-b²
∵ a,b都是正实数
∴ 在不等式两边同除以b,不等号方向不变
得:a2/b≥2a-b
3、 (a-b)²≥0
a²+b²-2ab≥0
a²+b²≥2ab
2(a²+b²)≥a²+b²+2ab
2(a²+b²)≥(a+b)²
4、 (a-b)²≥0
a²+b²-2ab≥0
a²≥2ab-b²
不等号两边同除以b2
得:(a/b)²≥2a/b-1
5、 (a-b)²≥0
a²+b²-2ab≥0
a²+b²≥2ab
不等号两边同除以ab
得:a/b+b/a≥2
(注:第五题要附加一个条件:a、b同号,也即:a与b必须同时大于零或同时小于零)
a²+b²-2ab≥0
a²+b²≥2ab
a²+b²+2ab≥4ab
(a+b)²≥4ab
∵ a,b都是正实数
∴ 在不等式两边同除以(a+b)ab,不等号方向不变.
即:(a+b)/ab≥4(a+b)
得:1/a+1/b≥4/(a+b)
2、 (a-b)²≥0
a²+b²-2ab≥0
a²≥2ab-b²
∵ a,b都是正实数
∴ 在不等式两边同除以b,不等号方向不变
得:a2/b≥2a-b
3、 (a-b)²≥0
a²+b²-2ab≥0
a²+b²≥2ab
2(a²+b²)≥a²+b²+2ab
2(a²+b²)≥(a+b)²
4、 (a-b)²≥0
a²+b²-2ab≥0
a²≥2ab-b²
不等号两边同除以b2
得:(a/b)²≥2a/b-1
5、 (a-b)²≥0
a²+b²-2ab≥0
a²+b²≥2ab
不等号两边同除以ab
得:a/b+b/a≥2
(注:第五题要附加一个条件:a、b同号,也即:a与b必须同时大于零或同时小于零)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1物体的运动状态不变一定是没有受到力的作用吗
- 2树木砍伐数量
- 3站在赤道上,展开双臂,面向太阳升起的地方,那么左手指向( ) A.东方 B.南方 C.北方 D.西方
- 4急需一篇作文主题是:现代科技给我们带来了什么?
- 5在地球上的不同地方不同高度称同一个东西,重量会有变化吗?
- 63米的四分之一和一米的四分之三一样长对吗
- 7直角三角形一条直角边长度固定为8,且斜边长度不超过100,要求找出所有满足条件的整数边长的直角三角形
- 8俄国十月革命引发的战争是?
- 9请帮我详细分析电解氯化铝溶液的原理(包括阴、阳极各自的反应)(另外,为什么氢离子在阴极会放电而使溶液碱性增强,于是形成氢氧化铝沉淀?)
- 10用6个相同的小长方形拼成一个大长方形,已知大长方形的周长是56厘米,一个小长方形的周长是多少厘米?