当前位置: > 一圆经过A(4,2),B(-1,3)两点,且在两坐标轴上的四个截距和为2,求此圆方程....
题目
一圆经过A(4,2),B(-1,3)两点,且在两坐标轴上的四个截距和为2,求此圆方程.

提问时间:2020-11-23

答案
设圆的方程为x2+Dx+y2+Ey+F=0,
将A(4,2),B(-1,3)两点代入进方程中,
得到:E=5D+10,F=-14D-40,
因为四个截距为2,所以-D-E=2,
所以解得:D=-2,F=-12,E=0,
所以圆方程为x2-2x+y2-12=0,即(x-1)2+y2=13.
利用待定系数法设出圆的一般方程,将两个点的坐标代入建立两个关系式,再根据在两坐标轴上的四个截距和为2建立一个关系式,只需解三元一次方程组即可解出圆的方程.

圆的标准方程.

本题主要考查了圆的一般式方程,以及利用待定系数法进行求解有关问题,属于基础题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.