题目
∫(0到-π)x sin(nx)dx=?
如上,把sin(nx)改为cos(nx)=?5
如上,把sin(nx)改为cos(nx)=?5
提问时间:2020-11-22
答案
两题都给你做下:
————————————————————————————————————
∫ xsin(nx) dx
= (- 1/n)∫ x d[cos(nx)]
= (- x/n)cos(nx) + (1/n)∫ cos(nx) dx
= (- x/n)cos(nx) + (1/n^2)sin(nx) + C
∴
∫(- π→0) xsin(nx) dx
= (- x/n)cos(nx) + (1/n^2)sin(nx)_(x = 0) - (- x/n)cos(nx) + (1/n^2)sin(nx)_(x = - π)
= (- π/n)cos(nπ)
= - π/n,当n为偶数
= π/n,当n为奇数
————————————————————————————————————
∫ xcos(nx) dx
= (1/n)∫ x d[sin(nx)]
= (x/n)sin(nx) - (1/n)∫ sin(nx) dx
= (x/n)sin(nx) + (1/n^2)cos(nx) + C
∴
∫(- π→0) xcos(nx) dx
= (x/n)sin(nx) + (1/n^2)cos(nx)_(x = 0) - (x/n)sin(nx) + (1/n^2)cos(nx)_(x = - π)
= (1/n^2)[1 - cos(nπ)]
= 0,当n为偶数
= 2/n^2,当n为奇数
————————————————————————————————————
∫ xsin(nx) dx
= (- 1/n)∫ x d[cos(nx)]
= (- x/n)cos(nx) + (1/n)∫ cos(nx) dx
= (- x/n)cos(nx) + (1/n^2)sin(nx) + C
∴
∫(- π→0) xsin(nx) dx
= (- x/n)cos(nx) + (1/n^2)sin(nx)_(x = 0) - (- x/n)cos(nx) + (1/n^2)sin(nx)_(x = - π)
= (- π/n)cos(nπ)
= - π/n,当n为偶数
= π/n,当n为奇数
————————————————————————————————————
∫ xcos(nx) dx
= (1/n)∫ x d[sin(nx)]
= (x/n)sin(nx) - (1/n)∫ sin(nx) dx
= (x/n)sin(nx) + (1/n^2)cos(nx) + C
∴
∫(- π→0) xcos(nx) dx
= (x/n)sin(nx) + (1/n^2)cos(nx)_(x = 0) - (x/n)sin(nx) + (1/n^2)cos(nx)_(x = - π)
= (1/n^2)[1 - cos(nπ)]
= 0,当n为偶数
= 2/n^2,当n为奇数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1自学的.有些问题搞不太清楚
- 2杜甫的诗歌能够贴近社会生活,在一定程度上反映劳动人民的苦难和愿望的原因是什么
- 3____little water is not enough for ___many people.
- 4离子间作用力,分子间作用力以及原子间作用力大小如何?
- 5只要算式,
- 6有10人乘木筏渡河,平均每个人的质量是60kg,木筏由若干根体积为0.1㎡的圆木组成,若木的密度为0.4×10的三次方kg/m³,此木筏至少需要______根圆木组成.
- 7I See My Cell
- 8地球自转一圈的时间
- 9小明和小雨共同打一份1150字的演讲稿小明平均每分钟打36个字小雨平均每分钟打32个字打了8分钟他们一共打了
- 10Γ分布函数 怎么计算呀?他有那些基本公式?
热门考点